Format

Send to

Choose Destination
Gigascience. 2017 Oct 1;6(10):1-10. doi: 10.1093/gigascience/gix082.

Proteomic landscape of the primary somatosensory cortex upon sensory deprivation.

Author information

1
Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, 6525 HJ, Nijmegen, the Netherlands.
2
Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, 6525 HJ, Nijmegen, the Netherlands.
3
Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.

Abstract

Experience-dependent plasticity (EDP) powerfully shapes neural circuits by inducing long-lasting molecular changes in the brain. Molecular mechanisms of EDP have been traditionally studied by identifying single or small subsets of targets along the biochemical pathways that link synaptic receptors to nuclear processes. Recent technological advances in large-scale analysis of gene transcription and translation now allow systematic observation of thousands of molecules simultaneously. Here we employed label-free quantitative mass spectrometry to address experience-dependent changes in the proteome after sensory deprivation of the primary somatosensory cortex. Cortical column- and layer-specific tissue samples were collected from control animals, with all whiskers intact, and animals whose C-row whiskers were bilaterally plucked for 11-14 days. Thirty-three samples from cortical layers (L) 2/3 and L4 spanning across control, deprived, and first- and second-order spared columns yielded at least 10 000 peptides mapping to ∼5000 protein groups. Of these, 4676 were identified with high confidence, and >3000 were found in all samples. This comprehensive database provides a snapshot of the proteome after whisker deprivation, a protocol that has been widely used to unravel the synaptic, cellular, and network mechanisms of EDP. Complementing the recently made available transcriptome for identical experimental conditions (see the accompanying article by Kole et al.), the database can be used to (i) mine novel targets whose translation is modulated by sensory organ use, (ii) cross-validate experimental protocols from the same developmental time point, and (iii) statistically map the molecular pathways of cortical plasticity at a columnar and laminar resolution.

KEYWORDS:

barrel cortex; juvenile mice; label-free quantification; mass spectrometry; proteomics; whisker plucking

PMID:
29020746
PMCID:
PMC5632293
DOI:
10.1093/gigascience/gix082
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center