Send to

Choose Destination
Chem Rev. 2017 Oct 25;117(20):12893-12941. doi: 10.1021/acs.chemrev.7b00291. Epub 2017 Oct 9.

Nature-Inspired Structural Materials for Flexible Electronic Devices.

Author information

Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.


Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center