Complex interplays between phytosterols and plastid development

Plant Signal Behav. 2017 Nov 2;12(11):e1387708. doi: 10.1080/15592324.2017.1387708. Epub 2017 Oct 9.

Abstract

Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.

Keywords: Chloroplast; farnesyl diphosphate; isoprenoid; mevalonate; sterol.

MeSH terms

  • Arabidopsis / metabolism
  • Chloroplasts / metabolism
  • Hemiterpenes / metabolism
  • Mevalonic Acid / metabolism
  • Organophosphorus Compounds / metabolism
  • Phytosterols / metabolism*
  • Plastids / metabolism*
  • Plastids / physiology

Substances

  • Hemiterpenes
  • Organophosphorus Compounds
  • Phytosterols
  • isopentenyl pyrophosphate
  • Mevalonic Acid