Format

Send to

Choose Destination
Materials (Basel). 2017 Oct 6;10(10). pii: E1159. doi: 10.3390/ma10101159.

Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

Author information

1
Department of Chemical and Materials Engineering, 12-372 Donadeo Innovation Center for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada, farjoo@ualberta.ca (A.F.). steve.kuznicki@ualberta.ca.
2
Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada. sadrzade@ualberta.ca.

Abstract

Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

KEYWORDS:

adsorption; clinoptilolite; hydrocarbon mixture; hydrogen separation; natural zeolite; zeolite membrane

Conflict of interest statement

The authors declare no conflict of interest. Also, the founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center