The periosteal requirement and temporal dynamics of BMP2-induced middle phalanx regeneration in the adult mouse

Regeneration (Oxf). 2017 Aug 20;4(3):140-150. doi: 10.1002/reg2.81. eCollection 2017 Jun.

Abstract

Regeneration of mammalian limbs is restricted to amputation of the distal digit tip, the terminal phalanx (P3). The adjacent skeletal element, the middle phalanx (P2), has emerged as a model system to investigate regenerative failure and as a site to test approaches aimed at enhancing regeneration. We report that exogenous application of bone morphogenetic protein 2 (BMP2) stimulates the formation of a transient cartilaginous callus distal to the amputation plane that mediates the regeneration of the amputated P2 bone. BMP2 initiates a significant regeneration response during the periosteal-derived cartilaginous healing phase of P2 bone repair, yet fails to induce regeneration in the absence of periosteal tissue, or after boney callus formation. We provide evidence that a temporal component exists in the induced regeneration of P2 that we define as the "regeneration window." In this window, cells are transiently responsive to BMP2 after the amputation injury. Simple re-injury of the healed P2 stump acts to reinitiate endogenous bone repair, complete with periosteal chondrogenesis, thus reopening the "regeneration window" and thereby recreating a regeneration-permissive environment that is responsive to exogenous BMP2 treatment.

Keywords: BMP2; digit; endochondral ossification; periosteum; regeneration.