Format

Send to

Choose Destination
Sci Rep. 2017 Sep 25;7(1):11816. doi: 10.1038/s41598-017-10461-4.

Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges.

Author information

1
INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France.
2
INRA, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, 35042, France.
3
INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France.
4
DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France.
5
CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France.
6
Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France.
7
Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France.
8
Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany.
9
URGI, INRA, Université Paris-Saclay, 78026, Versailles, France.
10
School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150, Australia.
11
INRA, Institute of Ecology and Environmental Sciences, 78000, Versailles, France.
12
Laboratory of Mammalian Genetics, Center for DNA Fingerprinting and Diagnostics (CDFD), Lab block: Tuljaguda (Opp. MJ Market), Nampally, Hyderabad, 500 001, India.
13
Department of Genetics, Universitat de València, 46100, Burjassot, Valencia, Spain.
14
Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, 46100, Burjassot, Valencia, Spain.
15
EPHE, PSL Research University, UMR1333 - DGIMI, Pathologie comparée des Invertébrés CC101, F-34095, Montpellier cedex 5, France.
16
CSIRO Ecosystem Sciences, Black Mountain, Canberra, ACT 2600, Australia.
17
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands.
18
Plateforme MGX, C/o institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France.
19
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China.
20
CSIRO, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601, Australia.
21
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, Brazil.
22
Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA.
23
Department of Plant Science, 102 Tyson Building, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA.
24
CNRS UMR 8030, 2 rue Gaston Crémieux, 91000, Evry, France.
25
Université d'Evry Val D'Essonne, 91000, Evry, France.
26
INRA, UMR1062 CBGP, IRD, CIRAD, Montpellier SupAgro, 755 Avenue du campus Agropolis, 34988, Montferrier/Lez, France.
27
DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France. Nicolas.Negre@univ-montp2.fr.
28
INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France. claire.lemaitre@inria.fr.
29
DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France. emmanuelle.d-alencon@inra.fr.

Abstract

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains ("C" and "R") that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.

PMID:
28947760
PMCID:
PMC5613006
DOI:
10.1038/s41598-017-10461-4
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center