Send to

Choose Destination
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):35427-35436. doi: 10.1021/acsami.7b10675. Epub 2017 Sep 29.

Asymmetric Conjugated Molecules Based on [1]Benzothieno[3,2-b][1]benzothiophene for High-Mobility Organic Thin-Film Transistors: Influence of Alkyl Chain Length.

He K1,2, Li W1, Tian H1, Zhang J1, Yan D1, Geng Y1,3,4, Wang F1.

Author information

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China.
University of Chinese Academy of Sciences , Beijing 100049, P. R. China.
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University , Tianjin 300072, P. R. China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P. R. China.


Herein, we report the synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-based asymmetric conjugated molecules, that is, 2-(5-alkylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene (BTBT-Tn, in which T and n represent thiophene and the number of carbons in the alkyl group, respectively). All of the molecules with n ≥ 4 show mesomorphism and display smectic A, smectic B (n = 4), or smectic E (n > 4) phases and then crystalline phases in succession upon cooling from the isotropic state. Alkyl chain length has a noticeable influence on the microstructures of vacuum-deposited films and therefore on the performance of the organic thin-film transistors (OTFTs). All molecules except for 2-(thiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-ethylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed OTFT mobilities above 5 cm2 V-1 s-1. 2-(5-Hexylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-heptylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed the greatest OTFT performance with reliable hole mobilities (μ) up to 10.5 cm2 V-1 s-1 because they formed highly ordered and homogeneous films with diminished grain boundaries.


asymmetric; mobility; morphology; organic semiconductors; organic thin-film transistors


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center