Format

Send to

Choose Destination
JCI Insight. 2017 Sep 21;2(18). pii: 92331. doi: 10.1172/jci.insight.92331. eCollection 2017 Sep 21.

Essential role of Kir5.1 channels in renal salt handling and blood pressure control.

Author information

1
Department of Physiology and.
2
Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
3
Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA.
4
Human and Molecular Genetics Center and.
5
Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Abstract

Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.

KEYWORDS:

Epithelial transport of ions and water; Ion channels; Nephrology; Potassium channels

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center