Molecular mechanisms of ampelopsin from Ampelopsis megalophylla induces apoptosis in HeLa cells

Oncol Lett. 2017 Sep;14(3):2691-2698. doi: 10.3892/ol.2017.6520. Epub 2017 Jul 4.

Abstract

Ampelopsin (AMP) is an active ingredient of flavonoid compounds that is extracted from Ampelopsis megalophylla Diels et Gilg. The present study aimed at investigating the antitumor activities of AMP and the possible underlying molecular mechanisms in HeLa cells. A total of three types of tumor cell were selected to screen antitumor activities for AMP using the MTT assay. Flow cytometry was used to analyze the cell apoptotic proportion and the cell cycle. Rhodamine 123 staining was used to determine changes in mitochondrial transmembrane potential. Western blot analysis was used to determine the expression of apoptosis-associated proteins. The results of the present study demonstrated that AMP may inhibit the viability of HeLa cells in a dose- and time-dependent manner. Changes in morphology were observed using fluorescence microscopy. In addition, Annexin V-fluorescein isothiocyanate/propidium iodide (PI) double staining revealed that AMP induced apoptosis in a concentration-dependent manner and PI staining indicated that HeLa cells were arrested in S phase. Furthermore, western blot analysis demonstrated that AMP treatment induced apoptosis through activation of caspases 9 and 3, which was validated by the increasing ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein to Bcl-2. Additionally, the loss of mitochondrial transmembrane potential and the release of cytochrome c suggested that AMP-induced apoptosis was associated with the mitochondrial pathway. Taken together, these results indicate that AMP may induce apoptosis via the mitochondrial signaling pathway in HeLa cells.

Keywords: Ampelopsis megalophylla Diels et Gilg; HeLa cells; ampelopsin; apoptosis; mitochondrial signaling pathway.