Send to

Choose Destination
J Neuropathol Exp Neurol. 2017 Oct 1;76(10):883-897. doi: 10.1093/jnen/nlx073.

Magnesium Sulfate Prevents Neurochemical and Long-Term Behavioral Consequences of Neonatal Excitotoxic Lesions: Comparison Between Male and Female Mice.

Author information

Department of Neonatal Pediatrics and Intensive Care - Neuropediatrics, Normandie Univ, UNIROUEN, INSERM U1245, and Rouen University Hospital, Rouen, France; Normal and Pathological Glutamatergic Systems, Neuroscience Paris Seine, IBPS, INSERM U1130, CNRS UMR 8246 Université Pierre et Marie Curie, Paris, France; INSERM U1088, Laboratoire de Biochimie, Centre de Biologie Humaine, Amiens-Picardie University Hospital, Amiens, France; Normandie Univ, UNIROUEN, PSY-NCA, Rouen, France.


Magnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery is proposed as a neuroprotective strategy against neurological alterations such as cerebral palsy in newborns. However, long-term beneficial or adverse effects of MgSO4 and sex-specific sensitivity remain to be investigated. We conducted behavioral and neurochemical studies of MgSO4 effects in males and females, from the perinatal period to adolescence in a mouse model of cerebral neonatal lesion. The lesion was produced in 5-day-old (P5) pups by ibotenate intracortical injection. MgSO4 (600 mg/kg, i.p.) prior to ibotenate prevented lesion-induced sensorimotor alterations in both sexes at P6 and P7. The lesion increased glutamate level at P10 in the prefrontal cortex, which was prevented by MgSO4 in males. In neonatally lesioned adolescent mice, males exhibited more sequelae than females in motor and cognitive functions. In the perirhinal cortex of adolescent mice, the neonatal lesion induced an increase in vesicular glutamate transporter 1 density in males only, which was negatively correlated with cognitive scores. Long-term sequelae were prevented by neonatal MgSO4 administration. MgSO4 never induced short- or long-term deleterious effect on its own. These results also strongly suggest that sex-specific neuroprotection should be foreseen in preterm infants.


Cognition; Development; Excitotoxic lesion; Magnesium sulfate; Prematurity; Sensorimotor behavior; Sex

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center