Format

Send to

Choose Destination
Curr Biol. 2017 Sep 25;27(18):2784-2797.e3. doi: 10.1016/j.cub.2017.08.016. Epub 2017 Sep 14.

A Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity.

Author information

1
Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK.
2
Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, UK. Electronic address: d.strutt@sheffield.ac.uk.

Abstract

The core planar polarity pathway coordinates epithelial cell polarity during animal development, and loss of its activity gives rise to a range of defects, from aberrant morphogenetic cell movements to failure to correctly orient structures, such as hairs and cilia. The core pathway functions via a mechanism involving segregation of its protein components to opposite cells ends, where they form asymmetric intracellular complexes that couple cell-cell polarity. This segregation is a self-organizing process driven by feedback interactions between the core proteins themselves. Despite intense efforts, the molecular pathways underlying feedback have proven difficult to elucidate using conventional genetic approaches. Here we investigate core protein function during planar polarization of the Drosophila wing by combining quantitative measurements of protein dynamics with loss-of-function genetics, mosaic analysis, and temporal control of gene expression. Focusing on the key core protein Frizzled, we show that its stable junctional localization is promoted by the core proteins Strabismus, Dishevelled, Prickle, and Diego. In particular, we show that the stabilizing function of Prickle on Frizzled requires Prickle activity in neighboring cells. Conversely, Prickle in the same cell has a destabilizing effect on Frizzled. This destabilizing activity is dependent on the presence of Dishevelled and blocked in the absence of Dynamin and Rab5 activity, suggesting an endocytic mechanism. Overall, our approach reveals for the first time essential in vivo stabilizing and destabilizing interactions of the core proteins required for self-organization of planar polarity.

KEYWORDS:

Drosophila; Frizzled; PCP; feedback; planar cell polarity; planar polarity; self-organization

PMID:
28918952
PMCID:
PMC5628951
DOI:
10.1016/j.cub.2017.08.016
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center