Send to

Choose Destination
Biochim Biophys Acta. 1987 Dec 17;894(3):399-406.

The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit.

Author information

Department of Biochemistry, John Curtin School of Medical Research, Australian National University, Canberra.


Site-directed mutagenesis was used to generate three mutations in the uncB gene encoding the a-subunit of the F0 portion of the F0F1-ATPase of Escherichia coli. These mutations directed the substitution of Arg-210 by Gln, or of His-245 by Leu, or of both Lys-167 and Lys-169 by Gln. The mutations were incorporated into plasmids carrying all the structural genes encoding the F0F1-ATPase complex and these plasmids were used to transform strain AN727 (uncB402). Strains carrying either the Arg-210 or His-245 substitutions were unable to grow on succinate as sole carbon source and had uncoupled growth yields. The substitution of Lys-167 and Lys-169 by Gln resulted in a strain with growth characteristics indistinguishable from a normal strain. The properties of the membranes from the Arg-210 or His-245 mutants were essentially identical, both being proton impermeable and both having ATPase activities resistant to the inhibitor DCCD. Furthermore, in both mutants, the F1-ATPase activities were inhibited by about 50% when bound to the membranes. The membrane activities of the mutant with the double lysine change were the same as for a normal strain. The results are discussed in relation to a previously proposed model for the F0 (Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L. (1986) Biochim. Biophys. Acta 849, 62-69).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center