Format

Send to

Choose Destination
Sci Adv. 2017 Sep 8;3(9):e1700159. doi: 10.1126/sciadv.1700159. eCollection 2017 Sep.

Ultratransparent and stretchable graphene electrodes.

Author information

1
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
2
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
3
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
4
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
5
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

Abstract

Two-dimensional materials, such as graphene, are attractive for both conventional semiconductor applications and nascent applications in flexible electronics. However, the high tensile strength of graphene results in fracturing at low strain, making it challenging to take advantage of its extraordinary electronic properties in stretchable electronics. To enable excellent strain-dependent performance of transparent graphene conductors, we created graphene nanoscrolls in between stacked graphene layers, referred to as multilayer graphene/graphene scrolls (MGGs). Under strain, some scrolls bridged the fragmented domains of graphene to maintain a percolating network that enabled excellent conductivity at high strains. Trilayer MGGs supported on elastomers retained 65% of their original conductance at 100% strain, which is perpendicular to the direction of current flow, whereas trilayer films of graphene without nanoscrolls retained only 25% of their starting conductance. A stretchable all-carbon transistor fabricated using MGGs as electrodes exhibited a transmittance of >90% and retained 60% of its original current output at 120% strain (parallel to the direction of charge transport). These highly stretchable and transparent all-carbon transistors could enable sophisticated stretchable optoelectronics.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center