Format

Send to

Choose Destination
Insect Biochem Mol Biol. 2017 Oct;89:58-70. doi: 10.1016/j.ibmb.2017.09.001. Epub 2017 Sep 11.

Molecular basis of peripheral olfactory sensing during oviposition in the behavior of the parasitic wasp Anastatus japonicus.

Author information

1
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
2
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China. Electronic address: bzren@163.com.

Abstract

Anastatus japonicus is a parasitic wasp and natural enemy of the litchi pest Tessaratoma papillosa, and for decades in China, A. japonicus has been mass-reared inside the eggs of Antheraea pernyi to control T. papillosa. A series of experiments was performed to explore the olfactory mechanism underlying the oviposition behavior of A. japonicus. First, a transcriptomic analysis was performed on the antennae of A. japonicus, and the resulting assemblies led to the generation of 70,473 unigenes. Subsequently, 21,368 unigenes were matched to known proteins, 48 odorant receptors (ORs) (including Orco) and 13 antennal ionotropic receptors (IRs) (including the co-receptors IR8a and IR25a) were identified and predicted to form complete open reading frames (ORFs). The FPKM (fragments per Kb per million reads) values and RT-PCR results showed that AjapOrco, AjapOR10, AjapOR27, AjapOR33 and AjapOR35 were either highly abundant or expressed specifically in the olfactory organs. Furthermore, AjapOrco silencing resulted in a significant decrease in both the parasitism rate and the host-seeking time of A. japonicus, whereas dsRNA injection showed that IR8a and IR25a did not produce significant behavioral changes, suggesting that the oviposition behavior of A. japonicus is more reliant on OR-based pathways than IR-based pathways. Our previous GC-MS data derived twenty-nine compounds which were abundent from these host plants and host insects. We performed electrophysiological and oviposition assays on A. japonicus, and eight odorants were found to elicit a significant electroantennogram (EAG) response. Among these odorants, β-Caryophyllene, Undecane, (E)-α-Farnesene (+)-Aromadendrene and Cis-3-Hexen-ol had strong attractant effects on oviposition, whereas 2-Ethyl-1-Hexan-ol, Ethyl Acetate and α-Caryophyllene had a strong repellant effects. Thus, these chemicals might influence oviposition guidance/repulsion behavior in A. japonicus. To further explore the target ORs that are tuned to the functional odorants, the nine candidate ORs described above were silenced by RNA interference, and the results showed that a large decrease in the EAG response of all the tested functional odorants in the AjapOrco-silencing group. In addition, the AjapOR35-silencing group showed a significant decrease in the EAG response to β-Caryophyllene and (E)-α-Farnesene, indicating that AjapOR35 is tuned to these two oviposition attractants β-Caryophyllene and (E)-α-Farnesene. Further binary-choice oviposition assays showed that the oviposition attractant effect of β-Caryophyllene and (E)-α-Farnesene vanished after AjapOR35 was silenced, indicating that the emission of these attractants from host plants can guide A. japonicus to locate eggs for ovipositioning and indicated that AjapOR35 is correlated with the olfactory detection oviposition behavior of this species. This study provides a better understanding of the molecular basis and functional chemicals underlying the oviposition behavior of A. japonicus, and the results may help improve biocontrol approaches.

KEYWORDS:

Biocontrol; Odorant receptor; Oviposition; Parasitic wasp

PMID:
28912112
DOI:
10.1016/j.ibmb.2017.09.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center