Send to

Choose Destination
mSystems. 2017 Sep 12;2(5). pii: e00059-17. doi: 10.1128/mSystems.00059-17. eCollection 2017 Sep-Oct.

Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium "Candidatus Nitrospira nitrosa".

Author information

Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Environmental Protection Agency, Cincinnati, Ohio, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.


The recently discovered comammox bacteria have the potential to completely oxidize ammonia to nitrate. These microorganisms are part of the Nitrospira genus and are present in a variety of environments, including biological nutrient removal (BNR) systems. However, the physiological traits within and between comammox and nitrite-oxidizing bacterium (NOB)-like Nitrospira species have not been analyzed in these ecosystems. In this study, we identified Nitrospira strains dominating the nitrifying community of a sequencing batch reactor (SBR) performing BNR under microaerobic conditions. We recovered metagenome-derived draft genomes from two Nitrospira strains: (i) Nitrospira sp. strain UW-LDO-01, a comammox-like organism classified as "Candidatus Nitrospira nitrosa," and (ii) Nitrospira sp. strain UW-LDO-02, a nitrite-oxidizing strain belonging to the Nitrospira defluvii species. A comparative genomic analysis of these strains with other Nitrospira-like genomes identified genomic differences in "Ca. Nitrospira nitrosa" mainly attributed to each strain's niche adaptation. Traits associated with energy metabolism also differentiate comammox from NOB-like genomes. We also identified several transcriptionally regulated adaptive traits, including stress tolerance, biofilm formation, and microaerobic metabolism, which might explain survival of Nitrospira under multiple environmental conditions. Overall, our analysis expanded our understanding of the genetic functional features of "Ca. Nitrospira nitrosa" and identified genomic traits that further illuminate the phylogenetic diversity and metabolic plasticity of the Nitrospira genus. IMPORTANCENitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches.


NOB; Nitrospira; comammox; metagenomics; “Ca. Nitrospira nitrosa”

Supplemental Content

Full text links

Icon for American Society for Microbiology Icon for PubMed Central
Loading ...
Support Center