Format

Send to

Choose Destination
Int J Parasitol. 2017 Oct;47(12):701-710. doi: 10.1016/j.ijpara.2017.08.002. Epub 2017 Sep 8.

Advances in the application of genetic manipulation methods to apicomplexan parasites.

Author information

1
Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA. Electronic address: ces@vetmed.wsu.edu.
2
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
3
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt.
4
Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
5
Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia. Electronic address: brian.cooke@monash.edu.

Abstract

Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control.

KEYWORDS:

Apicomplexan; CRISPR/Cas9; Gene editing; Genetic manipulation; Transfection

PMID:
28893636
DOI:
10.1016/j.ijpara.2017.08.002
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center