Transdermal Permeation of Drugs in Various Animal Species

Pharmaceutics. 2017 Sep 6;9(3):33. doi: 10.3390/pharmaceutics9030033.

Abstract

Excised human skin is utilized for in vitro permeation experiments to evaluate the safety and effect of topically-applied drugs by measuring its skin permeation and concentration. However, ethical considerations are the major problem for using human skin to evaluate percutaneous absorption. Moreover, large variations have been found among human skin specimens as a result of differences in age, race, and anatomical donor site. Animal skins are used to predict the in vivo human penetration/permeation of topically-applied chemicals. In the present review, skin characteristics, such as thickness of skin, lipid content, hair follicle density, and enzyme activity in each model are compared to human skin. In addition, intra- and inter-individual variation in animal models, permeation parameter correlation between animal models and human skin, and utilization of cultured human skin models are also descried. Pig, guinea pig, and hairless rat are generally selected for this purpose. Each animal model has advantages and weaknesses for utilization in in vitro skin permeation experiments. Understanding of skin permeation characteristics such as permeability coefficient ( P ), diffusivity ( D ), and partition coefficient ( K ) for each skin model would be necessary to obtain better correlations for animal models to human skin permeation.

Keywords: in vitro skin permeation; skin permeation; species difference; transdermal drug delivery.

Publication types

  • Review