Format

Send to

Choose Destination
Cell Rep. 2017 Sep 5;20(10):2341-2356. doi: 10.1016/j.celrep.2017.08.034.

Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9.

Author information

1
Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
2
Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
3
Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland. Electronic address: beat.nyfeler@novartis.com.
4
Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA. Electronic address: greg.hoffman@novartis.com.
5
Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA. Electronic address: leonogmurphy@gmail.com.

Abstract

Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4) are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS)-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.

KEYWORDS:

ALS; ATG9A; NCOA4; TAX1BP1; TBK1; ULK1/2; autophagy; ferritinophagy; pooled CRISPR screen; trafficking

PMID:
28877469
PMCID:
PMC5699710
DOI:
10.1016/j.celrep.2017.08.034
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center