Format

Send to

Choose Destination
Cytotechnology. 2018 Apr;70(2):577-591. doi: 10.1007/s10616-017-0131-2. Epub 2017 Sep 2.

Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF.

Author information

1
Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
2
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Salvador, BA, 40296-710, Brazil.
3
National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
4
Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil. milena@bahia.fiocruz.br.
5
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Salvador, BA, 40296-710, Brazil. milena@bahia.fiocruz.br.
6
National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil. milena@bahia.fiocruz.br.

Abstract

Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.

KEYWORDS:

G-CSF; Growth factors; IGF-1; Mesenchymal stem cells

PMID:
28866844
PMCID:
PMC5851953
[Available on 2019-04-01]
DOI:
10.1007/s10616-017-0131-2

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center