Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31612-31625. doi: 10.1021/acsami.7b10866. Epub 2017 Sep 11.

On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy.

Author information

1
Biomedical Engineering and Technology Institute, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 N. Zhongshan Rd., Shanghai 200062, PR China.
2
Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China.

Abstract

Glioblastoma is one of the most challenging and intractable tumors with the difficult treatment and poor prognosis. Unsatisfactory traditional systemic chemotherapies for glioblastoma are mainly attributed to the insufficient and nonspecific drug delivery into the brain tumors as well as the incomplete drug release at the tumor sites. Inspired by the facts that angiopep-2 peptide is an acknowledged dual-targeting moiety for brain tumor-targeting delivery and high-intensity focused ultrasound (HIFU) is an ideal trigger for drug release with an ultrahigh energy and millimeter-sized focus ability, in the present study, a novel HIFU-responsive angiopep-2-modified small poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) drug delivery system holding doxorubicin/perfluorooctyl bromide (ANP-D/P) was designed to increase the intratumoral drug accumulation, further trigger on-demand drug release at the glioblastoma sites, and enhance glioblastoma therapy. It was shown that the ANP-D/P was stable and had a small size of 41 nm. The angiopep-2 modification endowed the ANP-D/P with improved blood-brain barrier transportation and specific accumulation in glioblastoma tissues by 17 folds and 13.4 folds compared with unmodified NPs, respectively. Under HIFU irradiation, the ANP-D/P could release 47% of the drug within 2 min and induce the apoptosis of most tumor cells. HIFU-triggered instantaneous drug release at the glioblastoma sites eventually enabled the ANP-D/P to achieve the strongest antiglioblastoma efficacy with the longest median survival time (56 days) of glioblastoma-bearing mice and the minimum vestiges of tumor cells in the pathological slices among all groups. In conclusion, the HIFU-responsive ANP-D/P in this study provided a new way for glioblastoma therapy with a great potential for clinical applications.

KEYWORDS:

dual targeting; glioblastoma; high-intensity focused ultrasound (HIFU); on-demand drug release; small nanoparticles

PMID:
28861994
DOI:
10.1021/acsami.7b10866
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center