Format

Send to

Choose Destination
Cannabis Cannabinoid Res. 2017 May 1;2(1):87-95. doi: 10.1089/can.2016.0032. eCollection 2017.

Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

Author information

1
GW Pharmaceuticals, Salisbury, United Kingdom.
2
Department of Family Medicine, University of Vermont, Burlington, Vermont.
3
Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
4
School of Chemical Sciences, University of Auckland, Auckland, New Zealand.

Abstract

Introduction:Cannabis biosynthesizes Δ9-tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ9-tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB1). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB1 and hCB2 was measured in competition binding assays, using transfected HEK cells and [3H]CP55,940. Efficacy at hCB1 and hCB2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB1 and hCB2, equating to approximate Ki values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB1 and 125-fold greater affinity at hCB2. In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB1, suggestive of weak agonist activity, and no measurable efficacy at hCB2. Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB1 or CB2.

KEYWORDS:

Cannabis; THCA; cannabinoid receptors; pharmacodynamics; pharmacology; phytocannabinoids

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center