Format

Send to

Choose Destination
Cell Struct Funct. 1987 Feb;12(1):43-52.

Redistribution of fluorescently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol.

Abstract

Fluorescently labeled tubulin was quickly incorporated into the mitotic apparatus when injected into a live sand dollar egg. After a rectangular area (1.6 X 16 microns) of the mitotic spindle was photobleached at metaphase or anaphase by the irradiation of a laser microbeam, redistribution of fluorescence was almost complete within 30 sec. The photobleached area did not change in shape during the redistribution. During the period of redistribution, the bleached area moved slightly toward the near pole at metaphase and anaphase (means: 1.6 and 1.8 micron/min, respectively). These results indicate that redistribution was not due to the exchange of tubulin subunits only at the ends of microtubules but to their rapid exchange at sites along the microtubules in the bleached region. Furthermore, treadmilling of tubulin molecules along with the spindle microtubules possibly occurred at the rate of 1.6 micron/min at metaphase. Birefringence of the mitotic apparatus increased with a large increase in both the number and length of astral rays shortly after taxol was injected. However, the microtubules did not all seem to elongate at the same rate but appeared to become equalized in length. Chromosome movement stopped within 60 sec after the injection. Centrospheres became large and the labeled tubulin already incorporated into the centrospheres was excluded from the enlarged centrospheres. Shortly after the labeled tubulin was injected following the injection of taxol, it accumulated in the peripheral region of the centrospheres, suggesting that microtubules first assembled at this region. Fluorescently labeled tubulin in the mitotic apparatus in the egg after injection of taxol was redistributed much more slowly after photobleaching than in uninjected eggs.

PMID:
2882862
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center