Format

Send to

Choose Destination
J Neurosci Methods. 2017 Nov 1;291:61-68. doi: 10.1016/j.jneumeth.2017.08.007. Epub 2017 Aug 12.

Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

Author information

1
The Mind Research Network, Albuquerque, NM, 87106, USA. Electronic address: qyu@mrn.org.
2
The Mind Research Network, Albuquerque, NM, 87106, USA; School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.
3
The Mind Research Network, Albuquerque, NM, 87106, USA.
4
The Mind Research Network, Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87106, USA.
5
The Mind Research Network, Albuquerque, NM, 87106, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing, 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences in Beijing, 100049, China.
6
Olin Neuropsychiatry Research Center, Hartford, CT, 06106, USA; Department of Psychiatry, Yale University, New Haven, CT, 06520, USA; Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
7
The Mind Research Network, Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87106, USA; Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. Electronic address: vcalhoun@unm.edu.

Abstract

BACKGROUND:

A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data.

NEW METHOD:

Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios.

RESULTS:

Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios.

COMPARISON WITH EXISTING METHOD (S):

Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth.

CONCLUSION:

Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data.

KEYWORDS:

Brain graph; Ground truth; ICA; ROI; Simulation

PMID:
28807861
PMCID:
PMC5610951
DOI:
10.1016/j.jneumeth.2017.08.007
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center