Format

Send to

Choose Destination
Macromol Biosci. 2017 Nov;17(11). doi: 10.1002/mabi.201700141. Epub 2017 Aug 14.

Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing.

Thamm C1, DeSimone E1, Scheibel T1,2,3,4,5,6.

Author information

1
Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
2
Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
3
Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440, Bayreuth, Germany.
4
Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
5
Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
6
Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.

Abstract

Recombinantly produced spider silk proteins have high potential for bioengineering and various biomedical applications because of their biocompatibility, biodegradability, and low immunogenicity. Here, the recently described small spider silk protein eMaSp1s is assembled into hydrogels, which can be 3D printed into scaffolds. Further, blending with a recombinantly produced MaSp2 derivative eADF4(C16) alters the mechanical properties of the resulting hydrogels. Different spider silk hydrogels also show a distinct recovery after a high shear stress deformation, exhibiting the tunability of their features for selected applications.

KEYWORDS:

FTIR; biopolymers; circular dichroism; hydrogels; major ampullate spidroin; rheology

PMID:
28805010
DOI:
10.1002/mabi.201700141
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center