Send to

Choose Destination
Comput Math Methods Med. 2017;2017:4816024. doi: 10.1155/2017/4816024. Epub 2017 Jul 18.

Improved k-t PCA Algorithm Using Artificial Sparsity in Dynamic MRI.

Author information

Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China.
School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia.


The k-t principal component analysis (k-t PCA) is an effective approach for high spatiotemporal resolution dynamic magnetic resonance (MR) imaging. However, it suffers from larger residual aliasing artifacts and noise amplification when the reduction factor goes higher. To further enhance the performance of this technique, we propose a new method called sparse k-t PCA that combines the k-t PCA algorithm with an artificial sparsity constraint. It is a self-calibrated procedure that is based on the traditional k-t PCA method by further eliminating the reconstruction error derived from complex subtraction of the sampled k-t space from the original reconstructed k-t space. The proposed method is tested through both simulations and in vivo datasets with different reduction factors. Compared to the standard k-t PCA algorithm, the sparse k-t PCA can improve the normalized root-mean-square error performance and the accuracy of temporal resolution. It is thus useful for rapid dynamic MR imaging.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Hindawi Publishing Corporation Icon for PubMed Central
Loading ...
Support Center