Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2017 Aug 9. pii: JVI.00960-17. doi: 10.1128/JVI.00960-17. [Epub ahead of print]

Pathobiology of clade 2.3.4.4 H5Nx high pathogenicity avian influenza virus infections in minor gallinaceous poultry supports early backyard flock introductions in Western U.S., 2014-2015.

Author information

1
Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
2
Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA David.Swayne@ars.usda.gov.

Abstract

In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. The pathogenesis, transmission, and intra-host evolutionary dynamics of initial Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses in the U.S. were investigated in minor gallinaceous poultry species (i.e. species for which the U.S. commercial industries are small): Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Low mean bird infectious doses (<2 to 3.7 log10) support direct introduction and infection of these species as observed in mixed backyard poultry during the early outbreaks. Pathobiological features and systemic virus replication in all species tested were consistent with HPAI virus infection. Sustained virus shedding with transmission to contact-exposed birds, alongside long incubation periods, could enable unrecognized dissemination and adaptation to other gallinaceous such as chickens and turkeys. Genome sequencing of excreted viruses revealed numerous low-frequency polymorphisms and 20 consensus-level substitutions in all genes and species but especially in Japanese quail and Pearl guinea fowl and in internal proteins PB1 and PB2. This genomic flexibility after only one passage indicates that influenza viruses can continue to evolve in Galliformes, increasing their opportunity to adapt to other species. Our findings suggest that these gallinaceous poultry are permissive for infection and sustainable transmissibility with 2014 initial wild bird-adapted clade 2.3.4.4 virus, with potential acquisition of mutations leading to host range adaptation.IMPORTANCE The outbreak of clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus that occurred in the U.S. in 2014-2015 represents the worst livestock disease event in the country, with unprecedented socioeconomic and commercial consequences. Epidemiological and molecular investigations can identify transmission pathways of the HPAI virus. However, understanding the pathogenesis, transmission, and intra-host evolutionary dynamics of new HPAI viruses in different avian species is paramount. The significance of our research is in examining the susceptibility of minor gallinaceous species to HPAI virus, as this poultry sector also suffers from HPAI epizootics, and identifying its biological potential as epidemiological link between the waterfowl reservoir and the commercial chicken and turkey populations, with the ultimate goal of refining surveillance in these populations to enhance early detection, management, and control in future HPAI outbreaks.

PMID:
28794040
DOI:
10.1128/JVI.00960-17
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center