Format

Send to

Choose Destination
PLoS One. 2017 Aug 9;12(8):e0182119. doi: 10.1371/journal.pone.0182119. eCollection 2017.

Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM).

Author information

1
Occupational Lung Disease Institute, Korea Workers' Compensation and Welfare Service, Incheon, Republic of Korea.
2
Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Abstract

This study investigated the applicability of an HY-differential mobility analyzer with an optical particle counter (HY-DMA/OPC), named as KOFAM, for counting fibrous matters in real time. Fibers separated from particles by the HY-DMA were counted with an OPC. To assess the KOFAM performance, the proposed method and the conventional gold standard phase contrast microscopy (PCM) method were compared in terms of variables such as recovery, relative difference, coefficient of determination, and conformity. The optimal sheath-to-aerosol (outlet) flow ratio of the internal flow in the HY-DMA was determined to be 1.6:1. In terms of recovery of the HY-DMA, the highest recovery was obtained at a voltage of 500 V regardless of which type of asbestos was tested. The recovery rate for serpentine was 45.5% and that for amphibole was 34.9%. The coefficients of determination of serpentine (R2 = 0.89) and amphibole (R2 = 0.87) were highly correlated. With respect to the coefficient of variation (CV), the KOFAM demonstrated superior performance over the M7400AD and F-1 methods and showed almost no difference from the PCM method (KOFAM: 22.5%, M7400AD: 32.4%, F-1: 88.8%, and PCM: 21.9%). There was no statistically significant difference between concentration measurements of the KOFAM and PCM analyses. Accordingly, it was concluded that the KOFAM can be used as a superior alternative to conventional fiber measurement methods. The preliminary results support the use of the KOFAM for constant measurement of airborne asbestos concentrations in real time.

PMID:
28793318
PMCID:
PMC5549976
DOI:
10.1371/journal.pone.0182119
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center