Format

Send to

Choose Destination
Semin Vasc Surg. 2016 Dec;29(4):153-171. doi: 10.1053/j.semvascsurg.2016.08.005. Epub 2016 Aug 26.

Future research directions to improve fistula maturation and reduce access failure.

Author information

1
Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.
2
Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK.
3
Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.
4
Royal Free Hospital, University College London, London, UK.
5
Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT. Electronic address: alan.dardik@yale.edu.

Abstract

With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.

PMID:
28779782
PMCID:
PMC5547899
DOI:
10.1053/j.semvascsurg.2016.08.005
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center