Format

Send to

Choose Destination
Sci Rep. 2017 Aug 4;7(1):7336. doi: 10.1038/s41598-017-07463-7.

Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells.

Author information

1
Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
2
Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.
3
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
4
Division of Nano & Information Technology, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
5
Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea. inhok@kist.re.kr.

Abstract

We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF4/O2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiNx antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center