The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease

Autoimmun Rev. 2017 Oct;16(10):1058-1070. doi: 10.1016/j.autrev.2017.08.001. Epub 2017 Aug 2.

Abstract

Autoimmune diseases (ADs) are primarily mediated by the failure of immunological self-tolerance. Regulatory T cells (Tregs) play a critical role in the maintenance of induced tolerance to peripheral self-antigens, suppressing immoderate immune responses deleterious to the host and preventing the AD development. Tregs and suppressive cytokines are homeostatic with effective cells plus pro-inflammatory cytokines in healthy hosts which is defined as "Yang", and ADs are usually induced in case of disturbed homeostasis, which is defined as "Yin". Indeed, the Yin-Yang balance could explain the pathogenic mechanism of ADs. Tregs not only suppress CD4+ and CD8+ T cells but also can suppress other immune cells such as B cell, natural killer cell, DC and other antigen-presenting cell through cell-cell contact or secreting suppressive cytokines. In Tregs, Foxp3 as an intracellular protein displays a more specific marker than currently used other cell-surface markers (such as CD25, CD40L, CTLA-4, ICOS and GITR) in defining the naturally occurring CD4+ Tregs. Though the precise mechanism for the opposite effects of Tregs has not been fully elucidated, the importance of Tregs in ADs has been proved to be associated with kinds of immunocytes. At present, the surface marker, frequency and function of Tregs existed conflicts and hence the Tregs therapy in ADs faces challenges. Though some success has been achieved with Tregs therapy in few ADs both in murine models and humans, more effort should paid to meet the future challenges. This review summarizes the progress and discusses the phenotypic, numeric and functional abnormalities of Tregs and is the first time to systematically review the progress of Tregs therapy in kinds of ADs.

Keywords: Autoimmune disease; Regulatory T cell; Therapy; Yin and Yang.

Publication types

  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / immunology*
  • Autoimmune Diseases / therapy
  • Humans
  • Mice
  • T-Lymphocytes, Regulatory / immunology*