Format

Send to

Choose Destination
Faraday Discuss. 2017 Oct 26;204:419-428. doi: 10.1039/c7fd00089h.

Generic nature of long-range repulsion mechanism on a bulk insulator?

Author information

1
Institute of Physical Chemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany. kuehnle@uni-mainz.de.

Abstract

Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kinetic effects during growth, this result gives evidence for a long-range repulsion mechanism acting during the assembly of these stripes. The fact that this finding is robust against changes in the molecular structure indicates a generic nature of the observed mechanism, implying a ubiquitous origin such as electrostatic repulsion. Finally, we discuss parameters that might affect the unambiguous observation of this generic repulsion under specific experimental conditions.

PMID:
28766624
DOI:
10.1039/c7fd00089h

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center