Format

Send to

Choose Destination
Food Chem. 2017 Dec 15;237:356-363. doi: 10.1016/j.foodchem.2017.05.124. Epub 2017 May 25.

Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

Author information

1
Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
2
Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
3
Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China.
4
Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
5
Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China. Electronic address: zyyang@scbg.ac.cn.

Abstract

Famous oolong tea (Oriental Beauty), which is manufactured by tea leaves (Camellia sinensis) infected with tea green leafhoppers, contains characteristic volatile monoterpenes derived from linalool. This study aimed to determine the formation mechanism of linalool in tea exposed to tea green leafhopper attack. The tea green leafhopper responsible for inducing the production of characteristic volatiles was identified as Empoasca (Matsumurasca) onukii Matsuda. E. (M.) onukii attack significantly induced the emission of linalool from tea leaves (p<0.05) as a result of the up-regulation of the linalool synthases (CsLIS1 and CsLIS2) (p<0.05). Continuous mechanical damage significantly enhanced CsLIS1 and CsLIS2 expression levels and linalool emission (p<0.05). Therefore, continuous wounding was a key factor causing the formation and emission of linalool from tea leaves exposed to E. (M.) onukii attack. This information should prove helpful for the future use of stress responses of plant secondary metabolism to improve quality components of agricultural products.

KEYWORDS:

Aroma; Camellia sinensis; Green leafhopper; Linalool; Tea; Volatile

PMID:
28764007
DOI:
10.1016/j.foodchem.2017.05.124
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center