Format

Send to

Choose Destination
Exp Brain Res. 2017 Oct;235(10):3207-3216. doi: 10.1007/s00221-017-5053-x. Epub 2017 Jul 31.

Hemispheric differences in the processing of visual consequences of active vs. passive movements: a transcranial direct current stimulation study.

Author information

1
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Straße 8, 35039, Marburg, Germany. straubeb@med.uni-marburg.de.
2
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Straße 8, 35039, Marburg, Germany.
3
Department of Psychology, Justus-Liebig University, Giessen, Germany.

Abstract

Perceiving the sensory consequences of one's own actions is essential to successfully interact with the environment. Previous studies compared self- (active) and externally generated (passive) movements to investigate the processing of voluntary action-outcomes. Increased temporal binding (intentional binding) as well as increased detection of delays between action and outcome have been observed for active compared to passive movements. Using transcranial direct stimulation (tDCS) it has been shown that left hemispheric anodal stimulation decreased the intentional binding effect. However, whether the left hemisphere contributes to delay detection performance between action and outcome is unknown. We investigated polarization-dependent effects of left and right frontoparietal tDCS on detecting temporal action-outcome discrepancies. We applied anodal and cathodal stimulation to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas. After stimulation, participants were presented with visual feedback with various delays after a key press. They had to report whether they detected a delay between the key press and the feedback. In half of the trials the key press was self-initiated, in the other half it was externally generated. A main effect of electrode location indicated highest detection performance after frontal stimulation. Furthermore, we found that the advantage for active versus passive conditions was larger for left hemispheric anodal stimulation as compared to cathodal stimulation. Whereas the frontal cortex is related to delay detection performance in general, hemispheric differences seem to support the differentiation of self-initiated versus externally generated movement consequences.

KEYWORDS:

Action feedback; Action perception; Delay detection; Hemispheric lateralization; Transcranial direct current stimulation

PMID:
28762054
DOI:
10.1007/s00221-017-5053-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center