Format

Send to

Choose Destination
Elife. 2017 Jul 31;6. pii: e26404. doi: 10.7554/eLife.26404.

Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains.

Author information

1
Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Bordeaux, France.
2
Laboratoire de Biophysique Moléculaire aux Interfaces, GX ABT, Université de Liège, Gembloux, Belgium.
3
Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique Bordeaux, Pessac, France.
4
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
5
Interdisciplinary Institute for Neuroscience, CNRS, University of Bordeaux, Bordeaux, France.
6
LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
7
Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.

Abstract

Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.

KEYWORDS:

Membrane domain; Nicotiana benthamiana; membrane structure; phospholipids; plant biology; sterols; targeting

PMID:
28758890
PMCID:
PMC5536944
DOI:
10.7554/eLife.26404
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for eLife Sciences Publications, Ltd Icon for PubMed Central
Loading ...
Support Center