Format

Send to

Choose Destination
Biochim Biophys Acta. 1986 Sep 4;883(2):326-34.

Secretion of lysyl oxidase by cultured human skin fibroblasts and effects of monensin, nigericin, tunicamycin and colchicine.

Abstract

Lysyl oxidase is an extracellular enzyme that initiates crosslink formation in the major connective tissue proteins, the collagens and elastin. This enzyme activity accumulated in a fresh medium of cultured human skin fibroblasts for at least 24 h, but the accumulation was distinctly non-linear after the first 12 h. Most of the total enzyme activity was present in the medium, the activity found in the cell layer representing about 30% of the total activity at 4 h, and about 10-15% at 24 h. The bulk of the cell-layer-associated activity appeared to be extracellular, as more than half was lost upon trypsinization. Culturing of the cells for 8 h in the presence of either monensin or nigericin, ionophores known to inhibit the secretion of many proteins at the level of the Golgi complex, markedly reduced the accumulation of lysyl oxidase activity in the medium. Monensin was particularly effective, as it produced a distinct inhibition even at a 10 nM concentration, reaching 50% at 30 nM. Both ionophores also reduced enzyme activity in the cell layer, whereas no definite decrease was seen in the activity of the trypsinized cells. The effect of monensin was evidently not due to any general toxicity on the part of the drug, since even a 500 nM concentration gave no inhibition of the incorporation of [3H]leucine into total protein. Tunicamycin also reduced lysyl oxidase activity in the medium and to a lesser extent in the cell layer, but the effective dose, 1-10 micrograms/ml, also inhibited the incorporation of [3H]leucine into total protein. The reduced enzyme activity may therefore not be due to a direct effect of tunicamycin on the glycosylation of the lysyl oxidase protein itself but may be mediated through other actions of the drug. Colchicine caused no inhibition in lysyl oxidase activity secretion even at a 10 microM concentration, although it has been reported to inhibit collagen secretion at doses more than one order of magnitude lower.

PMID:
2874833
DOI:
10.1016/0304-4165(86)90325-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center