Send to

Choose Destination
J Cell Physiol. 1986 Aug;128(2):216-22.

Internalization of transforming growth factor-beta and its receptor in BALB/c 3T3 fibroblasts.


The fate of 125I-labeled transforming growth factor-beta (125I-TGF beta) after binding to its cells surface receptor has been investigated in BALB/c 3T3 mouse fibroblasts. Binding of 125I-TGF beta to cellular receptors at 4 degrees C is pH-sensitive, being markedly decreased at pH less than 6. Most (approximately 90%) of the 125I-TGF beta bound to cells at 4 degrees C can be removed by a brief treatment with acidic medium but is converted into an acid-resistant state rapidly after shifting the cells to 37 degrees C. Cell-bound 125I-TGF beta is degraded at 37 degrees C and the degradation products are released into the medium. The lysosomotropic bases chloroquine, methylamine, and ammonium and the carboxylic ionophore monensin inhibit the degradation and release of 125I-TGF beta from the cells. Cells allowed to accumulate 125I-TGF beta intracellularly by the action of chloroquine or monensin were treated with the bifunctional agent disuccinimidyl suberate in the presence of detergent Triton X-100; this treatment caused the cross-linking of internalized 125I-TGF beta with the 280-kilodalton TGF beta receptor component. Under conditions in which sustained binding and degradation of saturating 125I-TGF beta concentrations occurs, there is no marked decrease in the binding capacity of the cells even when protein synthesis is blocked with cycloheximide. These results indicate that after TGF beta binding the TGF beta:receptor complex becomes rapidly internalized and that TGF beta is directed towards lysosomes where it is degraded and released. However, the cell surface is replenished with TGF beta receptors recycled after internalization or supplied by a large intracellular pool.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center