Send to

Choose Destination
Mol Neurobiol. 2018 Jun;55(6):4777-4787. doi: 10.1007/s12035-017-0684-2. Epub 2017 Jul 20.

Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism.

Author information

Departamento de Química/ICET, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil.
Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil.
Instituto de Genética e Bioquímica (INGEB), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil.


Sulforaphane (SFN; C6H11NOS2) is an isothiocyanate found in cruciferous vegetables, such as broccoli, kale, and radish. SFN exhibits antioxidant, anti-apoptotic, anti-tumor, and anti-inflammatory activities in different cell types. However, it was not previously demonstrated whether and how this natural compound would exert mitochondrial protection experimentally. Therefore, we investigated here the effects of a pretreatment (for 30 min) with SFN at 5 μM on mitochondria obtained from human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2) at 300 μM for 24 h. We found that SFN prevented loss of viability in H2O2-treated SH-SY5Y cells. Furthermore, SFN decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes of H2O2-exposed cells. Importantly, SFN enhanced the levels of both cellular and mitochondrial glutathione (GSH). SFN also suppressed the H2O2-mediated inhibition of mitochondrial components involved in the maintenance of the bioenergetics state, such as aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase, as well as complexes I and V. Consequently, SFN prevented the decline induced by H2O2 on the levels of ATP in SH-SY5Y cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by using small interfering RNA (siRNA) abolished the mitochondrial and cellular protection elicited by SFN. Therefore, SFN abrogated the H2O2-induced mitochondrial impairment by an Nrf2-dependent manner.


Mitochondria; Nrf2; Oxidative phosphorylation; Sulforaphane; Tricarboxylic acid cycle


Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center