Send to

Choose Destination
Nat Sci Sleep. 2017 Jun 29;9:181-186. doi: 10.2147/NSS.S136467. eCollection 2017.

Total sleep time, alcohol consumption, and the duration and severity of alcohol hangover.

Author information

Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, Utrecht, The Netherlands.
Sleep Disorders and Research Center, Henry Ford Health System, Detroit, Michigan, USA.
Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
Centre for Human Psychopharmacology, Swinburne University, Melbourne VIC, Australia.



An evening of alcohol consumption often occurs at the expense of sleep time. The aim of this study was to determine the relationship between total sleep time and the duration and severity of the alcohol hangover.


A survey was conducted among Dutch University students to collect data on their latest alcohol hangover. Data on alcohol consumption, total sleep time, hangover severity, and duration were collected. Alcohol consumption and hangover severity and duration were compared for participants who (a) slept <5 hours, (b) slept between 5 and 7 hours, or (c) slept >7 hours.


Data from N=578 students (40.1% men and 59.9% women) were included in the statistical analyses. Significant correlations were found between total sleep time and alcohol consumption (r=0.117, p=0.005), hangover severity (r= -0.178, p=0.0001) and hangover duration (r=0.168, p=0.0001). In contrast, total alcohol consumption did not correlate significantly with overall hangover severity or duration. Those who slept longer than 7 hours consumed significantly more alcohol (p=0.016) and reported extended hangover duration (p=0.004). However, they also reported significantly less severe hangovers (p=0.001) than students who slept <7 hours.


Reduced total sleep time is associated with more severe alcohol hangovers.


alcohol; duration; hangover; severity; total sleep time

Conflict of interest statement

Disclosure Joris C Verster has received grants/research support from the Dutch Ministry of Infrastructure and the Environment, Janssen, Nutricia, Red Bull, and Takeda, and has acted as a consultant for the Canadian Beverage Association, Centraal Bureau Drogisterijbedrijven, Coleman Frost, Danone, Deenox, Eisai, Janssen, Jazz, Purdue, Red Bull, Sanofi-Aventis, Sen-Jam Pharmaceutical, Sepracor, Takeda, Transcept, Trimbos Institute, and Vital Beverages. Thomas Roth has received grants/research support from Aventis, Cephalon, GlaxoSmithKline, Neurocrine, Pfizer, Sanofi, Schering-Plough, Sepracor, Somaxon, Syrex, Takeda, Trans-Oral, Wyeth, and XenoPort and has acted as a consultant for Abbott, Acadia, Acoglix, Actelion, Alchemers, Alza, Ancil, Arena, AstraZeneca, Aventis, AVER, BMS, BTG, Cephalon, Cypress, Dove, Elan, Eli Lilly, Evotec, Forest, Glaxo Smith Kline, Hypnion, Impax, Intec, Intra-Cellular, Jazz, Johnson & Johnson, King, Lundbeck, McNeil, MediciNova, Merck, Neurim, Neurocrine, Neurogen, Novartis, Orexo, Organon, Prestwick, Procter & Gamble, Pfizer, Purdue, Resteva, Roche, The other authors report no conflicts of interest in this work.

Supplemental Content

Full text links

Icon for Dove Medical Press Icon for PubMed Central
Loading ...
Support Center