Format

Send to

Choose Destination
J Neurophysiol. 2017 Oct 1;118(4):2009-2023. doi: 10.1152/jn.00194.2016. Epub 2017 Jul 12.

Enhancement of phase-locking in rodents. I. An axonal recording study in gerbil.

Author information

1
Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium.
2
Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium philip.joris@med.kuleuven.be.

Abstract

The trapezoid body (TB) contains axons of neurons in the anteroventral cochlear nucleus projecting to monaural and binaural nuclei in the superior olivary complex (SOC). Characterization of these monaural inputs is important for the interpretation of response properties of SOC neurons. In particular, understanding of the sensitivity to interaural time differences (ITDs) in neurons of the medial and lateral superior olive requires knowledge of the temporal firing properties of the monaural excitatory and inhibitory inputs to these neurons. In recent years, studies of ITD sensitivity of SOC neurons have made increasing use of small animal models with good low-frequency hearing, particularly the gerbil. We presented stimuli as used in binaural studies to monaural neurons in the TB and studied their temporal coding. We found that general trends as have been described in the cat are present in gerbil, but with some important differences. Phase-locking to pure tones tends to be higher in TB axons and in neurons of the medial nucleus of the TB (MNTB) than in the auditory nerve for neurons with characteristic frequencies (CFs) below 1 kHz, but this enhancement is quantitatively more modest than in cat. Stronger enhancement is common when TB neurons are stimulated at low frequencies below CF. It is rare for TB neurons in gerbil to entrain to low-frequency stimuli, i.e., to discharge a well-timed spike on every stimulus cycle. Also, complex phase-locking behavior, with multiple modes of increased firing probability per stimulus cycle, is common in response to low frequencies below CF.NEW & NOTEWORTHY Phase-locking is an important property of neurons in the early auditory pathway: it is critical for the sensitivity to time differences between the two ears enabling spatial hearing. Studies in cat have shown an improvement in phase-locking from the peripheral to the central auditory nervous system. We recorded from axons in an output tract of the cochlear nucleus and show that a similar but more limited form of temporal enhancement is present in gerbil.

KEYWORDS:

MNTB; entrainment; peak splitting; phase-locking; trapezoid body

PMID:
28701535
PMCID:
PMC5626893
DOI:
10.1152/jn.00194.2016
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center