Send to

Choose Destination
PLoS One. 2017 Jul 10;12(7):e0180998. doi: 10.1371/journal.pone.0180998. eCollection 2017.

The induction of the transcription factor Nrf2 enhances the antinociceptive effects of delta-opioid receptors in diabetic mice.

Author information

Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.
Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.


The involvement of heme oxygenase 1 (HO-1) in the modulation of the antinociceptive effects of opioids in type 1 diabetes has been demonstrated but the role played by the transcription factor Nrf2 in the regulation of painful neuropathy and in the effects and expression of δ-opioid receptors (DOR) in type 2 diabetes, has not been studied. In male BKS.Cg-m+/+Leprdb/J (db/db) mice, the anti-allodynic effects produced by a Nrf2 transcription factor activator, sulforaphane (SFN) administered alone and combined with two DOR agonists, [d-Pen(2),d-Pen(5)]-Enkephalin (DPDPE) and (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N diethylbenzamide (SNC-80), were evaluated. The effects of SFN on glucose levels and body weight as well as on the proteins levels of Nrf2, HO-1, NAD(P)H: quinone oxidoreductase 1 (NQO1), MAPKs (JNK) and DOR in sciatic nerve from db/db mice were also assessed. This study showed that the administration of SFN dose dependently reversed mechanical allodynia, reduced hyperglycemia and body weight gain associated to type 2 diabetes and significantly increased the anti-allodynic effects of DPDPE and SNC-80 in db/db mice. This treatment normalized the down regulation of Nrf2 and NQO1 and enhanced the protein levels of HO-1 in db/db mice. Moreover, the administration of SFN also inhibited the JNK phosphorylation and DOR down-regulation in the sciatic nerve of diabetic mice. Our data indicated that SFN treatment is effective in reversing mechanical allodynia and enhancing DOR antinociceptive effects in db/db mice which effects might be mediated by activating Nrf2 signaling, reducing hyperglycemia, inhibiting JNK phosphorylation and avoiding DOR down-regulation in the sciatic nerve of these animals. These results propose SFN, alone and/or combined with DOR agonists, as interesting approaches for the treatment of painful diabetic neuropathy associated to type 2 diabetes in mice.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center