Format

Send to

Choose Destination
Mol Genet Metab. 2017 Sep;122(1-2):1-3. doi: 10.1016/j.ymgme.2017.05.018. Epub 2017 May 30.

Modifier genes: Moving from pathogenesis to therapy.

Author information

1
March of Dimes Foundation, United States; Department of Pediatrics, David Geffen School of Medicine at UCLA, United States. Electronic address: emccabe@mednet.ucla.edu.

Abstract

This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its disruption, and possibilities for its repair have never been more important as we search for new therapies.

PMID:
28684086
DOI:
10.1016/j.ymgme.2017.05.018
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center