Send to

Choose Destination
BMC Infect Dis. 2017 Jul 3;17(1):461. doi: 10.1186/s12879-017-2528-0.

A cross-sectional study to evaluate second line virological failure and elevated bilirubin as a surrogate for adherence to atazanavir/ritonavir in two urban HIV clinics in Lilongwe, Malawi.

Author information

Tulane University School of Public Health and Tropical Medicine, New Orleans, USA.
Tufts University School of Medicine, Boston, USA.
Lighthouse Trust, Lilongwe, Malawi.
The International Union Against Tuberculosis and Lung Disease, Paris, France.
University of North Carolina Project, Lilongwe, Malawi.
University of North Carolina School of Medicine, Chapel Hill, USA.
Department of Public Health, University of Malawi, College of Medicine, School of Public Health and Family Medicine, Lilongwe, Malawi.
University of North Carolina Project, Lilongwe, Malawi.
University of North Carolina School of Medicine, Chapel Hill, USA.



Malawi's national antiretroviral therapy program provides atazanavir/ritonavir-based second line regimens which cause concentration-dependent rise in indirect bilirubin. We sought to determine if elevated bilirubin, as a surrogate of atazanavir/ritonavir adherence, can aid in the evaluation of second line virological failure in Malawi.


We conducted a cross-sectional study of HIV-infected patients ≥15 years who were on boosted protease inhibitor-based second line antiretroviral therapy for at least 6 months in two urban HIV clinics in Lilongwe, Malawi. Antiretroviral therapy history and adherence data were extracted from the electronic medical records and blood was drawn for viral load, complete blood count, total bilirubin, and CD4 cell count at a clinic visit. Factors associated with virological failure were assessed using multivariate logistic regression model.


Out of 376 patients on second line antiretroviral therapy evaluated, 372 (98.9%) were on atazanavir/ritonavir-based therapy and 142 (37.8%) were male. Mean age was 40.9 years (SD ± 10.1), mean duration on second line antiretroviral therapy was 41.9 months (SD ± 27.6) and 256 patients (68.1%) had elevated bilirubin >1.3 mg/dL. Overall, 35 (9.3%) patients had viral load >1000 copies/ml (virological failure). Among the virologically failing vs. non-failing patients, bilirubin was elevated in 34.3% vs. 72.0% respectively (p < 0.001), although adherence by pill count was similar (62.9% vs. 60.7%, p = 0.804). The odds of virological failure were higher for adults aged 25-40 years (adjusted odds ratio (aOR) 2.5, p = 0.048), those with CD4 cell count <100 (aOR 17.5, p < 0.001), and those with normal bilirubin levels (aOR 5.4, p < 0.001); but were lower for the overweight/obese patients (aOR 0.3, p = 0.026). Poor pill count adherence (aOR 0.7, p = 0.4) and male gender (aOR 1.2, p = 0.698) were not associated with second line virological failure.


Among patients receiving atazanavir/ritonavir-based second line antiretroviral therapy, bilirubin levels better predicted virological failure than pill count adherence. Therefore, strategic use of bilirubin and viral load testing to target adherence counseling and support may be cost-effective in monitoring second line antiretroviral therapy adherence and virological failure. Drug resistance testing targeted for patients with virological failure despite elevated bilirubin levels would facilitate timely switch to third line antiretroviral regimens whenever available.


Adherence; Antiretroviral therapy; Atazanavir/ritonavir; Bilirubin; Second line; Surrogate; Virological failure

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center