Feasibility of dual-low scheme combined with iterative reconstruction technique in acute cerebral infarction volume CT whole brain perfusion imaging

Exp Ther Med. 2017 Jul;14(1):163-168. doi: 10.3892/etm.2017.4451. Epub 2017 May 11.

Abstract

The feasibility of application of low-concentration contrast agent and low tube voltage combined with iterative reconstruction in whole brain computed tomography perfusion (CTP) imaging of patients with acute cerebral infarction was investigated. Fifty-nine patients who underwent whole brain CTP examination and diagnosed with acute cerebral infarction from September 2014 to March 2016 were selected. Patients were randomly divided into groups A and B. There were 28 cases in group A [tube voltage, 100 kV; contrast agent, iohexol (350 mg I/ml), reconstructed by filtered back projection] and 31 cases in group B [tube voltage, 80 kV; contrast agent, iodixanol (270 mg I/ml), reconstructed by algebraic reconstruction technique]. The artery CT value, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), dose length product, effective dose (ED) of radiation and brain iodine intake of both groups were measured and statistically analyzed. Two physicians carried out kappa (κ) analysis on the consistency of image quality evaluation. The difference in subjective image quality evaluation between the groups was tested by χ2. The differences in CT value, SNR, CNR, CTP and CT angiography subjective image quality evaluation between both groups were not statistically significant (P>0.05); the diagnosis rate of the acute infarcts between the two groups was not significantly different; while the ED and iodine intake in group B (dual low-dose group) were lower than group A. In conclusion, combination of low tube voltage and iterative reconstruction technique, and application of low-concentration contrast agent (270 mg I/ml) in whole brain CTP examination reduced ED and iodine intake without compromising image quality, thereby reducing the risk of contrast-induced nephropathy.

Keywords: X-ray computer; cerebral infarction; radiation dose; tomography.