Format

Send to

Choose Destination
J Neurosci. 2017 Jul 26;37(30):7278-7289. doi: 10.1523/JNEUROSCI.0233-17.2017. Epub 2017 Jun 28.

A Test of the Stereausis Hypothesis for Sound Localization in Mammals.

Author information

1
Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands.
2
Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands g.borst@erasmusmc.nl.

Abstract

The relative arrival times of sounds at both ears constitute an important cue for localization of low-frequency sounds in the horizontal plane. The binaural neurons of the medial superior olive (MSO) act as coincidence detectors that fire when inputs from both ears arrive near simultaneously. Each principal neuron in the MSO is tuned to its own best interaural time difference (ITD), indicating the presence of an internal delay, a difference in the travel times from either ear to the MSO. According to the stereausis hypothesis, differences in wave propagation along the cochlea could provide the delays necessary for coincidence detection if the ipsilateral and contralateral inputs originated from different cochlear positions, with different frequency tuning. We therefore investigated the relation between interaural mismatches in frequency tuning and ITD tuning during in vivo loose-patch (juxtacellular) recordings from principal neurons of the MSO of anesthetized female gerbils. Cochlear delays can be bypassed by directly stimulating the auditory nerve; in agreement with the stereausis hypothesis, tuning for timing differences during bilateral electrical stimulation of the round windows differed markedly from ITD tuning in the same cells. Moreover, some neurons showed a frequency tuning mismatch that was sufficiently large to have a potential impact on ITD tuning. However, we did not find a correlation between frequency tuning mismatches and best ITDs. Our data thus suggest that axonal delays dominate ITD tuning.SIGNIFICANCE STATEMENT Neurons in the medial superior olive (MSO) play a unique role in sound localization because of their ability to compare the relative arrival time of low-frequency sounds at both ears. They fire maximally when the difference in sound arrival time exactly compensates for the internal delay: the difference in travel time from either ear to the MSO neuron. We tested whether differences in cochlear delay systematically contribute to the total travel time by comparing for individual MSO neurons the best difference in arrival times, as predicted from the frequency tuning for either ear, and the actual best difference. No systematic relation was observed, emphasizing the dominant contribution of axonal delays to the internal delay.

KEYWORDS:

auditory; cochlear disparity; interaural time difference; internal delay; medial superior olive; sound localization

PMID:
28659280
DOI:
10.1523/JNEUROSCI.0233-17.2017
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center