Format

Send to

Choose Destination
Enzyme Microb Technol. 2017 Sep;104:9-15. doi: 10.1016/j.enzmictec.2017.05.002. Epub 2017 May 13.

Biotransformation of pyridoxal 5'-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli.

Author information

1
Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
2
Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, Republic of Korea.
3
Department of Chemical Engineering, College of Engineering, Soongsil University, 511 Sangdo-dong, Seoul 06978, Republic of Korea.
4
Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong city, Republic of Korea.
5
Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, Republic of Korea. Electronic address: seokor@konkuk.ac.kr.

Abstract

Cadaverine, a five-carbon diamine (1,5-diaminopentane), can be made by fermentation or direct bioconversion and plays an important role as a building block of polyamides. Lysine decarboxylase (CadA) transforms L-lysine to cadaverine and pyridoxal 5'-phosphate (PLP) can increases conversion rate and yield as a cofactor. Biotransformation of cadaverine using whole Escherichia coli cells that overexpress the lysine decarboxylase has many merits, such as the rapid conversion of l-lysine to cadaverine, possible application of high concentration reactions up to the molar level, production of less byproduct and potential reuse of the enzyme by immobilization. However, the supply of PLP, which is a cofactor of lysine decarboxylase, is the major bottleneck in this system. Therefore, we initiated our study on PLP precursors and PLP-related enzymes and discovered that pyridoxal (PL) can be a viable alternative to supply PLP. Among various PLP systems examined, pyridoxal kinase (PdxY) showed the highest conversion of PL to PLP, resulting in more than 60% conversion of l-lysine to cadaverine with lysine decarboxylase. When the reaction with 0.4M l-lysine, 0.2mM PL and more whole cells was performed, it resulted in an 80% conversion yield. Furthermore, when barium-alginate immobilization was applied, it showed a 90% conversion yield in 1h with PL, suggesting that it is compatible with developed whole-cell systems without a direct supply of exogenous PLP.

KEYWORDS:

Cadaverine; Lysine decarboxylase; Pyridoxal (PL); Pyridoxal 5′-phosphate (PLP); Pyridoxal kinase (PdxY)

PMID:
28648182
DOI:
10.1016/j.enzmictec.2017.05.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center