Format

Send to

Choose Destination
J Biotechnol. 2017 Sep 10;257:233-239. doi: 10.1016/j.jbiotec.2017.06.410. Epub 2017 Jun 21.

Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin.

Author information

1
Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
2
Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany. Electronic address: thomas.schafhauser@biotech.uni-tuebingen.de.
3
Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany.
4
Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
5
Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
6
Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
7
Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. Electronic address: jutta.ludwig-mueller@tu-dresden.de.
8
Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany.

Abstract

Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.

KEYWORDS:

Anthraquinone; Biosynthetic gene cluster; Emodin; Endophyte; Lecanoromycetes; Skyrin

PMID:
28647529
DOI:
10.1016/j.jbiotec.2017.06.410
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center