Send to

Choose Destination
Nat Commun. 2017 Jun 20;8:15885. doi: 10.1038/ncomms15885.

Plastid thylakoid architecture optimizes photosynthesis in diatoms.

Author information

Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France.
Laboratoire d'Etudes des Matériaux par Microscopie Avancée, Institut Nanosciences et Cryogénie, Service de Physique des Matériaux et Microstructures, CEA-Grenoble, 38000 Grenoble Cédex 9, France.
Institut de Biologie Physico-Chimique (IBPC), UMR 7141, CNRS and Université Pierre et Marie Curie (UPMC), 75005 Paris, France.
CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France.
Plant Biochemistry, Department of Biology, ETH Zurich, CH-8092 Zürich, Switzerland.
Department of Biology, University of Konstanz, 78457 Konstanz, Germany.


Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center