Format

Send to

Choose Destination
Int J Dev Biol. 2017;61(3-4-5):205-213. doi: 10.1387/ijdb.160453ka.

Single cell analysis of the inner ear sensory organs.

Author information

1
The inner ear is composed of a complex mixture of cells, which together allow organisms to hear and maintain balance. The cells in the inner ear, which undergo an extraordinary process of development, have only recently begun to be studied on an individual level. As it has recently become clear that individual cells, previously considered to be of uniform character, may differ dramatically from each other, the need to study cell-to-cell variation, along with distinct transcriptional and regulatory signatures, has taken hold in the scientific community. In conjunction with high-throughput technologies, attempts are underway to dissect the inter- and intra-cellular variability of different cell types and developmental states of the inner ear from a novel perspective. Single cell analysis of the inner ear sensory organs holds the promise of providing a significant boost in building an omics network that translates into a comprehensive understanding of the mechanisms of hearing and balance. These networks may uncover critical elements for trans-differentiation, regeneration and/or reprogramming, providing entry points for therapeutics of deafness and vestibular pathologies.

Abstract

The inner ear is composed of a complex mixture of cells, which together allow organisms to hear and maintain balance. The cells in the inner ear, which undergo an extraordinary process of development, have only recently begun to be studied on an individual level. As it has recently become clear that individual cells, previously considered to be of uniform character, may differ dramatically from each other, the need to study cell-to-cell variation, along with distinct transcriptional and regulatory signatures, has taken hold in the scientific community. In conjunction with high-throughput technologies, attempts are underway to dissect the inter- and intra-cellular variability of different cell types and developmental states of the inner ear from a novel perspective. Single cell analysis of the inner ear sensory organs holds the promise of providing a significant boost in building an omics network that translates into a comprehensive understanding of the mechanisms of hearing and balance. These networks may uncover critical elements for trans-differentiation, regeneration and/or reprogramming, providing entry points for therapeutics of deafness and vestibular pathologies.

PMID:
28621418
PMCID:
PMC5709810
DOI:
10.1387/ijdb.160453ka
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for The International Journal of Developmental Biology Icon for PubMed Central
Loading ...
Support Center