Changes in viability of rat adipose-derived stem cells isolated from abdominal/perinuclear adipose tissue stimulated with pulsed electromagnetic field

J Physiol Pharmacol. 2017 Apr;68(2):253-264.

Abstract

Previous experiments demonstrated that low-frequency electromagnetic field (LF-EMF) may activate cellular death pathways in proliferating cells. Therefore, we hypothesized that LF-EMF may also influence viability of highly proliferating undifferentiated adipose-derived stem cells. Obesity is classified as a civilization disease; its etiopathogenesis is presumed to include both genetic predisposition and influence of modified environmental factors, such as unbalanced diet with excess calories and/or too low physical activity. Obesity may lead to a number of metabolic disorders, including type 2 diabetes mellitus, cardiovascular diseases (associated with atherosclerosis) related to primary hypertension and ischemic heart disease, myocardial infarction and other complications. The aim of this study was to verify if LF-EMF alters viability parameters of adipose-derived stem cells (ADSCs) isolated from rats, cultured in vitro and exposed to pulsed electromagnetic field (PEMF; 7 Hz, 30 mT). ADSCs were obtained from healthy rats and animals with experimentally-induced obesity, both males and females, pups and adults. The animals were fed with chow with either low (LF diet) or high fat content (HF diet) for 21 days. Then, ADSCs were isolated from extracted adipose tissue and used to establish cell cultures. ADSCs from the first passage were exposed to PEMF three times, 4 hours per exposure, at 24-h intervals (experimentally developed protocol of PEMF stimulation). 24 hours after the last exposure to PEMF, viability parameters of ADSCs were analyzed by flow cytometry (FCM). The study demonstrated that LF diet exerted a protective effect on PEMF-exposed ADSCs, especially in the case of male and female pups. In turn, the proportion of early apoptotic cells in PEMF-treated ADSC cultures from adult female rats maintained on HF diet turned out to be significantly higher than in other experimental groups.

MeSH terms

  • Adipose Tissue / cytology*
  • Animals
  • Cell Survival
  • Electromagnetic Fields*
  • Female
  • Male
  • Rats, Wistar
  • Stem Cells*