Format

Send to

Choose Destination
J Neurobiol. 1985 May;16(3):211-26.

Control of swimming in the hydrozoan jellyfish Aequorea aequorea: direct activation of the subumbrella.

Abstract

The epithelial cells that overlie the inner nerve ring of the hydrozoan jellyfish Aequorea aequorea were investigated ultrastructurally and electrophysiologically. The structurally unspecialized epithelial cells are interconnected by gap junctions and are electrically active during swimming as a single, long-duration action potential was recorded during each swim contraction. Intercellular electrical- and dye-coupling was demonstrated within the epithelial region extending into the velum and subumbrellar regions. Excitatory post-synaptic potentials were recorded from epithelial cells following swim motorneuron spikes with a short latency. Psps were up to 60 mV in amplitude and, when triggered in bursts, showed summation provided the interpulse interval was less than 25-35 ms. The initial gap in each of a series of bursts showed facilitation with the first few swim contractions following a period of inactivity. In actively swimming medusae, psp amplitude was relatively constant. The reversal potential for epithelial psp was estimated at between 0 and +20 mV. Spontaneous psps spread throughout the epithelial region electronically, but the amplitude decrease with conducting distance was less than that for current pulses injected into individual epithelial cells. This presumably represents the effect of widespread synaptic activation of epithelial cells via multiple input sites throughout the inner nerve ring as opposed to point-source input in current injection experiments. During a radial response, action potential amplitude was decreased and rise time increased due to decremental conduction through the inhibited region. It is postulated that conduction of a full action potential requires that electrotonic current spread from adjacent, active epithelial cells occur in synchrony with synaptic input from swim motoneurons.

PMID:
2861247
DOI:
10.1002/neu.480160306
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center